
SOFTWARE FOR
INTEGRATED MANUFACTURING

SYSTEMS
PART I1

R A. Volz and A. W. Naylor
The Robotics Research Laboratory

The University of Michigan

July 28, 1987

Abstract The goals of our manufacturing software research are:

Part I presented an overview of the Michigan unified approach
to manufacturing software. This paper considers the specific
characteristics of the approach that allow it to realize the goals
of reduced cost, increased reliability and increased flexibil-
ity. It examines why the blending of a components view, dis-
tributed languages, generics and formal models is important,
why each indi&ual part of this approach is essential, and why
each component will typically have each of these parts. An
example of a specification for a red material handling sys-
tem will be presented using our apprpach and compared with
the standard interface specification given by the manufacturer.
Use of the component in a distributed manufacturing system
will then be compared with use of the traditional specification
with a more traditional approach to designing the system.

This paper will also provide an overview of the underlying

1. To develop techniques for building manufacturing soft-
ware in a more reliable, less costly manner than present
techniques.

2. To develop techniques for
manufacturing software.

maintenance of

3. To develop techniques for producing reusable software.

4. To develop techniques for producing portable software.

5 . To develop techniques supporting a components indus-
try.

Each of the five key concepts supports one or more of these
goals. _ _
2 Use of Modern Extensible General mechanisms used for implementing distributed m a n u f a c h g

systems using our unified software/hardware component a ~ -
proach. Purpose Languages

1 Introduction

Part I of this paper identified the following five concepts as
the keys to our approach to manufacturing software:

Wrlliam Boller of Hewlett Packard’ has recently stated, with
respect to manufacturing software, that “Complexity is the root
of all evil.” Managing complexity is one of the most impr-
tant things that must be done to develop reliable software.
Managing complexity has also been one of the principal goals
of software engineering research during the past two decades,
and significant results have been obtained [1,2], including:

1. Manufacturing should be built in modem ex-
tensible general purpose languages.

2. Manufacturing software should be object oriented and 0 Modular approaches to program development that pro-
vide a conceptually clear view of the system being im- created as assemblages of components.

3. Explicit formal semantic models are required.
plemented - This aids software production and main-
tenance.

Powerful program verification techniques that, while not
totally automatic - no existing technique is for pro-
grams of any size -, do automatically detect a very
large fraction of program errors, thus reducing the cost
of program development.

4. Generics will amplify software reusability.

5. The above should be carried out in a largely distributed
language environment.

In this paper, we explore the motivations for the use of these
key concepts further and discuss an example of applying them
to a material handling system. Factory of the F u m , ” The Economist, May 30, 1987.

399

0 Modular approaches to program development that re-
duce compilation costs.

0 Highly expressible and extensible capabilities.

0 Portability of programs from one system to another.

0 Techniques for managing concurrent/parallel real-time
tasks.

Obtaining these same advantages for manufacturing software
is important, and far more likely to be achieved a standard
language is adopted than if a new one is built from scratch.

Among the language mechanisms used to achieve these
results are:

0 data encapsulation and hiding,

0 data and program abstraction,

0 strong typing,

0 separate compilation (both of different modules and of
module specifications and implementations), and

0 explicit control of representations - particularly for nu-
merics.

Placing all of these into a special purpose language is a very
difficult, time consuming and error prone task. Yet omitting
them would be to forgo some of the capabilities needed to
achieve our goals [3,4,5].

3 Use Object Oriented Software

Our world is made up of objects, and we are accustomed to
thinking about the management of our life in terms of the
objects around us and operations that may be performed on
them. E.g., I am editing on my computer terminal. I drive
my car to work each day. Etc. It is natural to carry this mode
of thinking over to our problem solving and system building
activities, in which case, it is called object oriented design [6].
This approach helps develop a conceptual clarity of the system
being built and organize its complexity.

When coupled with the representation of the object by a
specification - the public interface to the object that presents
the only ways (operations) by which the object may be ac-
cessed - and a body that implements the object, the object
oriented approach is the natural mechanism for developing
plug compatible components and a whole new approach to the
relationship between suppliers and manufacturers.

With a components industry for manufacturing equipment
and software in place, manufacturers would specify in a formal
way the requirements for the manufacturing equipment they
need and the component suppliers would supply manufactur-
ing hardware and software components which would “plug”
into the rest of the manufacturers system. Several things de-

rive from this view. First, the industrial manufacturer designs
the package specification to provide the view of the manufac-
turing device necessary for the application at hand. Compo-
nent suppliers are then given the compiled specification and
must provide not only the required hardware, but a body to
th: component package which is compatible with the manu-
fxturer compiled specification as well. Since the componen,
is now formally specified and can be automatically machinc
checked for compliance with the specification, several vec-
dors might bid against each other for the job. Second, since
the body must reside in the control computer, the supplier
must take responsibility for the applications level communi-
cation across the network. The supplied software component
is directly plugable into the manufacturer’s computer. This
is exactly the opposite of current practice in which the man-
ufacturer assumes the responsibility for custom designing the
hardware and software interfaces for integration of the system.

Third, since suppliers will have a fixed and standard kame-
work within which they must deliver components, it will both
be easier to develop custom products and easier to formulate
standards when a class of devices has reached maturity.

4 Formal Models

We need models of the factory floor and process plans in order
to develop control algorithms. Since we realize the factory
floor and process plans as assemblages of software/hardware
components, we are, in effect, concerned with formal semantic
models for such components. The modeling methodology used
is described in more detail in [7,8]. One component may
include models of other components. The models may then be
used in a predictive sixnulation manner to examine the likely
outcome of a possible control strategy before it is actually
applied.

Finally, the modeling methodology can be used to repre-
sent the process plans that the cell is to implement as well as
the actions of the components. The uniform modeling of pro-
cess plans and software/hardware components simplifies the
software structure and allows one to view the process plans as
just another component in the system. And, the formal models
of process plans can be converted to actual components that
drive the operation of the system. At present the translation
from the formal models to actual software is performed man-
ually, but conceptually (at present, and in the future actually)
they could be convected automatically.

5 Generics

Generics can be used in a variety of ways. The most obvious
was stated in Part I, to obtain software reuseability through
what amounts to parameterization of the types and functions
used in a component. However, generics can be used in other
ways as well. They can be used to provide an individualized
interface to a component, as will be illustrated below. That is,
each user of a component, such as a material handling system,

400

can instantiate hisher own “view” or interface to the system.
In this way, the interface to the system can be simplified.

One can also consider dynamic extensions to generics that
would allow a user to create instances of generic components
at run-time. In this case, each real component would contain
the parameters necessary to complete a generic instantiation
of it. The user would just reference the generic component
and name a specific real component (for example a specific
vehicle from a pool of vehicles in a material handling system)
from which an actual instance of the component would be
created. Resource managers, in particular, would find it useful
to operate in this manner.

6 A Distributed Language Environ-
ment

Sec. 2 above described a number of advantages available from
modem software engineering tools. These capabilities, how-
ever, are centered at the language level. That is, they are
achievable for single programs. In the manufacturing world,
however, we are clearly working across machine boundaries.
Even for modest sized systems, there will be multiple con-
trol computers that will have to communicate with each other.
In order to achieve the full advantages of modem software
engineering, then, one should look to distributed program ex-
ecution, that is, execution of a single program across a net-
work of processors. One then obtains the advantages of con-
ceptual clarity, modularity and automatic program verification
currently possible with single programs on single machines.
The single program view of a distributed system would allow
verification to be done across the entire system instead of, as
is now the case, only on the subsets of a program residing
on a single processor. In addition, it reduces the program-
mer’s view of interprocessor communication to interprocess
communication, which is the programmer’s natural view of
communication; special application level communication pro-
tocols become unnecessary, and any lower level protocols be-
come transparent to the programmer.

Our approach to this need has been to adopt a standard
programming language intended for real-time operation and
develop a distributed version of it. Because it is basically a
good language, is subject to intense standardization efforts,
and is ostensibly intended for distributed execution, we se-
lected Ada. To achieve distributed execution, we have built a
pre-translator that takes a single Ada program as an input and
whose output is a collection of pure Ada programs, one for
each targeted processor. This is somewhat akin to the way em-
bedded SEQUEL is handled in the DB2 database management
system.

Our distributed Ada system [9] allows us to distribute li-
brary packages and library subprograms statically among a set
of homogeneous processors. We write a single program and
use a pragma (essentially a complier directive) called SITE to
spec@ the location on which each library unit is to execute.
For example, if a simple transport system were controlled by

computer number 2 and the cell control using it were on com-
puter 1, a sample of relevant code might look as follows:

pragma SITE (2);
package VEHICLE is

procedure MOVEIORWARD;

end VEHICLE;

pragma SITE(1);
with VEHICLE;
procedure CONTROL is

begin

VEIUCLE.MOVE_FORWARD;

end;

Our translation system would replace the local call to the
procedure VEHICLE.MOVEI0RWARD with the appropriate
remote call. Similarly any references in CONTROL to data
objects defined in package VEHICLE would be translated into
appropriate remote references as would task entry calls. Note
that the user need only use the normal procedure call mecha-
nism to cause the vehicle to move.

7 Material Handling System Example

[7] describes a generic factory control system that has been
built and simulated using the ideas described above. In this
section, we explore one component of such a system in more
detail, a material handling system? We suppose a material
handling system (MHS) that is used to move pallets from one
location to another, has a number of vehicles to carry out the
moves, and can be utilized by several different parts of the
system.

From a hardware/software component, Le., object, perspec-
tive we think of the relevant objects in the system and the
functions performed on them by the parts of the system that
need to use the MHS. In the simplest view of this example,
the relevant objects (from the perspective of the user of the
MHS) are the MHS itself, the pullets that are to be moved, and
the locutions to/from which they pallets are moved. The vehi-
cles used are not relevant to the user, and thus should remain
hidden from the view provided to the MHS user. Since there
are potentially multiple parts of a factory system, e.g., multi-
ple cells, that could have need to more or less independently
make use of the MHS, the MHS should support a concept of
multiple users. However, for any one user, the view of the
MHS should not have to be cluttered with unnecessary detail
about the other users. Generics allows us to achieve this.

‘We have actually implemented a more complete absmction of a ma-
terial handling system than that described here.

40 1

We show here a simplified (only in the sense of a reduced
set of operations supported by the MHS) generic interface to
the component:

generic
package GENERICMHS is

lype PALLET is private;
lype LOCATION is privnle;
LI .L2.L3,U,LN: conblanl LOCATION;
lype MOVEJD is privale;
lype ACKNOWLEDGE is (OK, BUSY, FULL);
lype MOVESTATUS i5 (WAITING. MOVING. DONE);
MHSNONRESPONDENT exceplion;
procedure ALLOCATEPALLET(P oul PALLW, ACK: oul ACKNOWLEDGE);
function WHEREPALLET(P PALLET) return LOCATION;
procedure REQUESTMOVE(P PALLET; L LOCATION.

M: out MOVEJD, ACK: wt ACKNOWLEDGE);
procedure MOVE.STATUS(M: MOVEID; MS: uuI MOVESTATUS);
privale

end GENERICMHS;

A cell controller using the MHS might look something like
the following:

p r a g m SITE(I);
wilh GWERICMHS;
procedure CELL-CONTROL is

package LOCALMHS is new GENERICMHS;
use LOCALMHS;
PI. p2: PALLW
MS: MOVE-STATUS;
MI. MZ: MOVEJD
ACK. ACKNOWLEDGE,

ALLOCATEPALLET(P1 ,ACK);
begin

MOVEREQUEST(PI. L l , MI. ACK);

ALLOCATEPALLET(P2,ACK);

MOVEREQUEST(P2. L2. MZ, ACK);

MOVESTATUS(M1. MS);

end CELLXOKIROL;

There are a number of points to notice about this example.
First, the instantiation of the generic MHS provides a clear and
straightforward interface to the MHS, expressed in terms a user
would fmd convenient in dealing with the MHS component.
The command names have been chosen to have an implied
semantics indicative of the operation to be performed. Reading
the control program is straightforward. The types provided are
just those needed to talk about the objects associated with the
MHS. lrrelevant details are hidden.

This example is also presented in terms of a distributed
system. The cell controller is indicated as being located on
site 1. It is not stated where the MHS is located, and the
only fact about its location that is relevant to the cell con-
troller is the fact that it might be on a different computer. In
th is case, the function and procedure calls to the MHS ob-
ject will involve remote calls to the site at which the actual
MHS controller is located. This possibility is manifested in

the generic MHS through the exception NONRESFQNDENT.
When the user (CELL-CONTROL in this case) instantiates a
copy of GENERCMHS, that copy will appear on the same
computer as CELL-CONTROL. Hidden in the implementa-
tion of the local copy, LOCALMHS, is a periodic checking
of the communication line and a timeout on the return from
the remote procedure calls. If the communication line fails or
the actual MHS does not respond within its prescribed time,
the implementation of LOCALMHS will raise the exception
NONRESPONDENT, and CELL-CONTROL can deal with
this as necessary. Only the abstraction representing failure
of the actual MHS is appropriate for CELL-CONTROL to be
concerned with; of course, other kinds of failures could equally
well be represented.

The translation system supporting distributed program exe-
cution replaces all calls to remote components with the appro-
priate communication routines and implicitly manages com-
munication routing.

Also note that by focussing on an object oriented view of
the components the potential for standardization is increased.
It is now easy to think in terms of standardizing the interface to
a single component type, such as an MHS, without having to
consider any other component types in the system. The types,
procedures, functions, exceptions and call profiles become the
formal expression of the standard. Moreover, the syntactic
compliance to a standard can be automatically checked by the
system compiler.

8 Conclusion

A coherent approach to manufacturing software is one of the
most important building blocks needed for U.S. industry to
truly develop integrated manufacturing systems. We have de-
scribed a concept by which coherent manufacturing can be
accomplished. However, the theory is not yet complete. In-
deed, much remains to be done. Extensions to the formal
modeling system are needed to more fully handle generics
and distribution of components. The process of instantiation
of generics to real components must be extended to allow dy-
namic instantiations. Distributed languages must be studied
in a more general context of multiple forms of memory in-
terconnections, multiple possible binding times, and various
degrees of homogeneity (e.g., see the major dimensions of a
distributed language defined in [lo]).

Yet, we have accomplished enough to demonstrate the vi-
ability of the major underlying ideas. A primitive version of
a distributed Ada translation system is working, and a limited
generic real-time factory controller is operational, with real
factoIy components replaced by simulation. We believe that
when it is fully developed, the approach presented here can
become the heart of future integrated manufacturing systems.

402

I References

[l] B. Liskov and J. Gutsag. Abstraction and specification
in program development. MIT Press, Cambridge, MA,
1986.

121 J.C. Cleaveland. An Innoduction to Data Types.
Addison-Wesley, Reading, Mass, 1986.

[3] E. Denert. Trends in Information Processing Systems. 3rd
Conference of the European Cooperation in Informatics,
chapter Software Engineering: Experience and Convic-
tions, pages 16-35. Springer-Verlag, October 1981.

[4] S.N. Woodfield, H.E. Dunsmore, and V.Y. Shen. The
effect of modularization and comments on program com-
prehension. In Sth International Conference on Sofhvare
Engineering, pages 215-23, March 1981.

[5] L. Varga. Specifications of reliable software. Tanul-
manyok Magy. Tud. Akad. Szamitastech. And Autom. Kut.
Intez. (Hungary), (1 13):309-25. 1980.

[6] Grady Booch. Software Engineering with Ada. Ben-
jamm/Cummings, second edition, 1987.

[7] A.W. Naylor and R.A. Volz. Design of integrated man-
ufacturing system control software. IEEE Trans. on Sys.,
Man, and Cybernetics, submitted 1987.

[8] A.W. Naylor and M.C. Maletz. The manufacturing game:
a formal approach to manufacturing software. IEEE
Trans. on Sys., Man, and Cybernetics, SMC-16:321-334,
May-June 1986.

[9] R.A. Volz, P. Krishnan, and R. Theriault. An approach to
distributed execution of Ada programs. In NASA Work-
shop on Telerobotics, to appear 1987.

[lo] R.A. Volz, T.N. Mudge, G.D. Buzzard, and P. Krishnan.
Translation and execution of distibuted Ada programs:
is it still Ada? IEEE Transactions on Software, Special
Issue on Ada, to appear 1987.

403

